Myeloprolifirative Disorders

(MPD)

המצגת הוכנה ע"י: אלעד בן מאיר 4 סטודנט שנה בית הספר לרפואה אוניברסיטת תל-אביב

> מחלקה פנימית ג' המרכז הרפואי שיבא טיוטור: דר' חוסם קאסם

Conceptual organization of hematologic malignancies

Organization of tumors of the hematopoietic and lymphoid tissues as described by the World Health Classification 2008.

Table 103-1 WHO Classification of Chronic Myeloproliferative Disorders

Chronic myelogenous leukemia, [Ph chromosome t(9;22)(q34;11), BCR/ABL-positive]

Chronic neutrophilic leukemia

Chronic eosinophilic leukemia (and the hypereosinophilic syndrome)

Polycythemia vera

Chronic idiopathic myelofibrosis (with extramedullary hematopoiesis)

Essential thrombocythemia

Chronic myeloproliferative disease, unclassifiable

MPD - Common Features

- Origin in a multipotent hematopoietic progenitor cell
- Overproduction of one or more blood element without significant dysplasia
- Predilection to extramedullary hematopoiesis
- Myelofibrosis
- Transformation to AML (varying rate)

CML\CEL\CNL vs PV\ET\IMF

	CML\CEL\CNL	PV\ET\IMF
phenotype	primarily myeloid	Primarily erythroid or megakaryocytic hyperplasia
genotype	CML – t(9;22)(q34;11) CNL – t(15;19) CEL – PDGFRα mutation	JAK2 V617F
Transformatiom into each other	-	+
Natural history	 Measured in years High transformation into AML 	 Measured in decades Low transformation into AML

PV\ET\IMF - Common Features

- Variable degrees of BM hypercellularity
- Atypical megakaryocytic hyperplasia and clustering
- Splenomegaly
- Leukocytosis
- Thrombocytosis
- Clonal cytogenetic abnormalities
- JAK2

JAK2

- Janus kinase (JAK, "Just another kinase") is a family of intracellular tyrosine kinases that transduce cytokine-mediated signals via the JAK/STAT pathway.
- In the Janus family (JAK 1,2,3, TYK2) each has a kinase domain (JAK homology 1) and a catalytically inactive pseudokinase domain (JAK homology 2).
- These 2 similar domains in the protein reminds of the **Roman God Janus** who looked simultaneously in 2 directions.

- The JAK/STAT signal transduction pathway plays a major role in cellular proliferation, differentiation and survival.
- Abnormalities affecting members of this pathway are associated with hematological malignancies.
- Sequencing of the JAK2 in patients with 9pLOH revealed a G to T transversion that changed a valine to phenylalanine at position 617: V617F
- The mutant JAK2 V617F protein resulted in better transduction of the signals induced by GF and gain of function involves loss of control and overproduction of mature cells.

Table 1. Milestones in the History of Philadelphia-Negative Myeloproliferative Disorders and Their Relationship	
with the V617F Mutation in JAK2.*	

Year	Historical Milestone	Relationship Later Established with V617F Mutation in JAK2
1892	Fist description of polycythemia vera ⁴	
1951	Poly cythemä vera, essential thrombocythemia, and idio- pathic myelofibrosis linked as related conditions*	Mutation found in all three disorders ⁶⁻⁹
1974	I dentification of erythropoletin-independent erythroid colonies ¹⁰	Mutation associated with cytokine independence of primary erythroid progenitors and cell lines ⁶⁻⁹
1976	Stem-cell origin of polycythemia vera ²³	Mutation found in multipotent progenitors and hematopoletic stem cells ^{6,12}
1983-2003	Dysregu ated tyrosine kinases found in chronic myeloid leukemia, ^{13,14} masto cytosis, ¹⁹ chronic myelomo nocy- tic leukemia, ^{16,17} and chronic eosinophilic leukemia ¹¹	Tyrosinekinase function of JAK2 constitutively activated by mutation ^{79,19}
2002	Description of mitotic recombination involving chro- mosome 9p as the most common cytogenetic lesion in polycythemia vera ²⁰	Homozygosity of the mutation caused by mitotic recombination of chromosome 9p**
2001-2004	Erythropoletin-independent growth in polycythemia vera dependent on JAK-STAT signaling ^{21,22}	STAT proteins constitutively activated by muta- tion ^{7-9,19}
2005	Description of the JAK2 V617F mutation 9,19	

* STAT denotes signal transducers and activators of transcription.

Polycitemia Vera

(PV)

General

- A clonal disorder involving a multipotent hematopoietic progenitor cell in which phenotypically normal RBC, Leukocytes and platelets accumulate in the absence of recognizable physiologic stimulus
- The most common MPD
- 2 per 100,000
- Occurrence increasing with age
- Familial transmission occurs but infrequent
- Slight M>W
- Median survival 9-12 y

Etiology

- Unknown
- cytogenetic abnormalities (9p, 20q, trisomy 8) – 30% of pts.
- JAK2 V617F >90% express mutation, 30% homozygotes
- JAK2 V617F is the basis for many phenotipic characteristic of PV pts. but not solely.
- No clinical difference between WT\hetrozygotes\homosygotes PV pts.

Clinical features

• Blood count:

- RBC 个 (Polycytosis)
- Platlets (Thrombocytosis)
- WBC个 (Leukocytosis)
- Splenomegaly
- Venus\Arterial thrombosis (Cerebral, Cardiac, mesenteric vessels)
 - Budd chiari syndrome
 - Digital ischemia
 - Easy bruising
 - Epistaxis
 - Acid-peptic disease
 - Gastrointestinal hemorrhage
- Systolic hypertension

Clinical features

- **Erythromelalgia** (Erythema, burning and pain in the extrimities)
- Aquagenic pruritus
- Neurologic symptoms
 - Vertigo
 - Tinnitus
 - Headache
 - visual disturbances
 - TIA
- Hyperuricemia (secondary gout, uric acid stones)

PV

Polycythemia vers is characterized by an increased hematocrit in the peripheral blood (test tube on left); a hypercellular marrow with increased numbers of erythrold, megakaryocytic, and granulocytic precursor cells; and a variable increase in the number of reticulin fibers. Essential thrombocythemia is characterized by an increase in the number of platelets in the peripheral blood and an increased number of megakaryocytes in the marrow, which tend to cluster together and have hyperiobated nuclei, idio pathic myelofibrosis is characterized by the presence of immature red and white cells, a so-celled evicent/templation blood film) and "teardron" red cells, disordered cellular architecture.

Complications

- 1. Increase in blood viscosity
- 2. Increased RBC, leukocytes and platelets turnover (increased uric acid & cytokine production)
- Thrombosis & infarctions in vital organs
- Peptic ulcer disease
- **Myelofibrosis** (mostly reversible, may cause hepatosplenomegaly)
- Transformation into AML (2%)

Diagnosis

- Absolute erythrocytosis (RBC mass & plasma volume)
- RBC count, MCV, RDW microcytic erythrocytosis with 个RDW
- Leukocytosis & thrombocytosis
- JAK2 V617F
- Erythropoietin levels
- uric acid \uparrow
- BM biopsy & cytogenetic abnormality non specific!!

Table 103-2 Causes of Erythrocytosis

Relative erythrocytosis: Hemoconcentration secondary to dehydration, androgens, or tobacco abuse Absolute erythrocytosis

Hypoxia

Carbon monoxide intoxication

High affinity hemoglobin

High altitude

Pulmonary disease

Right-to-left shunts

Sleep-apnea syndrome

Neurologic disease

Renal disease

Renal artery stenosis

Focal sclerosing or membranous glomerulonephritis

Renal transplantation

Tumors

Hypernephroma

Hepatoma

Cerebellar hemangioblastoma

Uterine fibromyoma

Adrenal tumors

Meningioma

Pheochromocytoma

Drugs

Androgens

Recombinant erythropoietin

Familial (with normal hemoglobin function, Chuvash, erythropoietin receptor mutations)

WHO criteria for PV 2007

Major criteria

- 1. Hemoglobin **18.5 g/dL** in men, **16.5 g/dL** in women or other evidence of increased red cell volume
- 2. Presence of **JAK2 617VF** or other functionally similar mutation such as JAK2 exon 12 mutation

Minor criteria

- 1. BM biopsy showing **hypercellularity** for age with trilineage growth (**Panmyelosis**) with prominent erythroid, granulocytic, and megakaryocytic proliferation
- 2. Serum Epo level < the reference range for normal
- 3. Endogenous erythroid colony formation in vitro

Diagnosis requires the presence of both major criteria and 1 minor criterion or the presence of the first major criterion together with 2 minor criteria

Rx.

• PHLEBOTOMY -

- The mainstay of treatment.
- Goal: to keep Hct < 45%\Hb<14 g/dL in men, and Hct<42%\Hb<12 g/dL in women.
- Maintain RBC mass within normal range and induce a state of iron deficiency.
- Once an iron deficiency state is achieved phlebotomy at 3-month intervals
- Aspirin
 - Potentially harmful if the RBC mass is uncontrolled by phlebotomy
 - Indicated only when thrombosis has occurred
- **Cytotoxic agents** their use should be avoided. If must be used:
 - In <u>younger</u> pts. **IFNα**, **Angrelide** (PDEi), **HU** or **Allogenic BM trans**.
 - In <u>older</u> pts. HU start 1 g daily or **busulfan** start 4mg daily
 - In <u>elderly</u> pts. with life expectancy < 10 yrs. $-^{32}P$ every 3 months
- <u>Rx. of pruritus</u> antihistamines $\ paroxetine (SSRI) \ IFN\alpha$
- <u>Rx. of erythromelalgia (microvascular disturbances)</u> aspirin → if non responsive Cytotoxic agents (HU)
- <u>Rx of hyperuricemia</u> Allopurinol

Rx.

Risk		Rx.
Low	no history of thrombosis and Age<60 and Plt ct. < 1.5 million	Phlebotomy + Aspirin
High	history of thrombosis or age ≥ 60 years	Phlebotomy + Aspirin + HU
Intermediate	Neither low- nor high-risk	Phlebotomy + Aspirin (depends) + HU?

Essential Thrombtosisocy (ET)

General

- A clonal disorder involving a multipotent hematopoietic progenitor cell of unknown ethiology characterised by over production of platelets without a definable cause
- 1-2 per 100,000
- F > M
- Occur at any age
- No clonal marker is available

Table 103-5 Causes of Thrombocytosis

Malignancy
Infection
Myeloproliferative disorders: polycythemia vera, idiopathic myelofibrosis, essential thrombocytosis, chronic myelogenous leukemia
Myelodysplastic disorders: 5q-syndrome, idiopathic refractory sideroblastic anemia
Postsplenectomy or hyposplenism
Hemorrhage
Iron deficiency anemia
Surgery
Rebound: Correction of vitamin B ₁₂ or folate deficiency, post-ethanol abuse
Hemolysis

Etiology

- Unknown
- cytogenetic abnormalities (20q, trisomy 8) –
 5% of pts.
- JAK2 V617F 50% express mutation, 60% homozygotes
- Neither TPO nor c-Mpl has been implicated in the pathogenesis of ET

Clinial features

- A significant number of pts. are **asymptomatic**
- Blood count:
 - **− Platelets ↑** (>10⁶)
 - Mild WBC \uparrow
 - Hb N
- Blood film: many large and abnormal platelets

Clinial features

• Thrombosis

- microvascular occlusions (erythromelalgia, ocular migrane, TIA)
- Hemorrhage tendency acquired vWD
- Mild Splenomegaly
- Marrow biopsy :
 - Megakaryocyte hyperplasia & hypertrophy
 - Hypercellularity
- Transformation into PV, MF and AML

Polycythemia vers is characterized by an increased hematocrit in the peripheral blood (test tube on left); a hypercellular marrow with increased numbers of erythrold, megakaryocytic, and granulocytic precursor cells; and a variable increase in the number of reticulin fibers. Essential thrombocythemia is characterized by an increase in the number of platelets in the peripheral blood and an increased number of megakaryocytes in the marrow, which tend to cluster together and have hyperiobated nuclei, idio pathic myelofibrosis is characterized by the presence of immature red and white cells, a so-celled evicent/templation blood film) and "teardron" red cells, disordered cellular architecture.

Diagnosis

ET is diagnosed by exclusion –
 R/O reactive or clonal causes of thrombocytosis

Table 103-5 Causes of Thrombocytosis
Malignancy
Infection
Myeloproliferative disorders: polycythemia vera, idiopathic myelofibrosis, essential thrombocytosis, chronic myelogenous leukemia
Myelodysplastic disorders: 5q-syndrome, idiopathic refractory sideroblastic anemia
Postsplenectomy or hyposplenism
Hemorrhage
Iron deficiency anemia
Surgery
Rebound: Correction of vitamin B12 or folate deficiency, post-ethanol abuse
Hemolysis

Proposed revised WHO criteria for ET 2007

- 1. Sustained platelet count > 450 x 10⁹/L
- 2. Bone marrow biopsy specimen showing **proliferation mainly of the megakaryocytic lineage** with increased numbers of enlarged, mature megakaryocytes; no significant increase or left-shift of neutrophil, granulopoiesis or erythropoiesis
- 3. Not meeting WHO criteria for PV, IMF, CML, MDS, or other myeloid neoplasm
- Demonstration of JAK2 617VF or other clonal marker, or in the absence of a clonal marker, no evidence for reactive thrombocytosis

Diagnosis requires meeting all 4 criteria

- Survival of ET pts. is not different than of general population.
- Elevated platelets count in asymptomatic ET patient without cardiovascular risk factors requires no therapy.
- Therapy required only to alleviate microvascular symptoms (50%) and prevent thrombosis (20%) and major bleeding (5%).

Rx.

- Aspirin low dose aspirin (40-80 mg/day) safe and reduces thrombotic complications
- Cytotoxic agents
 - -Hydroxyurea as first line Rx at any age
 - IFNα in hydroxyurea failures or for childbearing age females

-Anagrelide if you can not use the above

Rx.

	Rx.	
Low	no history of thrombosis and Age<60 and Plt ct. < 1.5 million	Aspirin
High	history of thrombosis or age ≥ 60 years	Aspirin + HU
Intermediate	Neither low- nor high-risk	Aspirin (depends) + HU?

Idiopathic Myelofibrosis

(IMF)

General

- A clonal disorder involving a multipotent hematopoietic progenitor cell of unknown ethiology characterised by marrow fibrosis, extramedullary hematopoiesis and splenomegaly.
- The least common MPD
- Most common in 6th decade or later
- Median survival 5 y
- Myelofibrosis and splenomegaly are common features of PV, CML and variety of other disorders.

Table 103-3 Disorders Causing Myelofibrosis		
Malignant	Nonmalignant	
Acute leukemia (lymphocytic, myelogenous, megakaryocytic)	HIV infection	
Chronic myelogenous leukemia	Hyperparathyroidism	
Hairy cell leukemia	Renal osteodystrophy	
Hodgkin disease	Systemic lupus erythematosus	
Idiopathic myelofibrosis	Tuberculosis	
Lymphoma	Vitamin D deficiency	
Multiple myeloma	Thorium dioxide exposure	
Myelodysplasia	Gray platelet syndrome	
Polycythemia vera		
Systemic mastocytosis		

Etiology

- Unknown
- cytogenetic abnormalities (9p, 20q-, trisomy 8 or 9 or 1q) – common, non specific.
- JAK2 V617F 45% express mutation, almost non homozygotes
- Fibrosis\osteosclerosis\angiogenesis caused by overproduction of TGFβ\osteoprotegerin\VEGF respectively.
- Fibroblasts involved are polyclonal

Clinical features

- No specific signs or symptoms, many are asymptomatic at presentation
- Splenomegaly
- Blood count:
 - Anemia Hb \downarrow , MCV \rightarrow
 - Platlets \uparrow , \downarrow
 - $-WBC\uparrow$, \downarrow
- Hepatomegaly
- Non-hepatosplenic EMH

Clinial features

- Leukoerythroblastic smear:
 - Teardrop poikilocytes
 - Nucleated RBC
 - Myeloblasts, myelocytes and promyelocytes
- Marrow biopsy:
 - Reactive\cellular phase rare
 - Myelofibrosis fibrosis & megakariocyte atypia, inaspirable
- Bone pain

Clinial features

- Constitutinal symptoms:
 - Night sweat
 - Fatigue
 - low-grade fever
 - weight loss (cachexia)

Symptom/sign	Clinical feature
Myeloproliferation	Splenomegaly
	Hepatomegaly
	Extramedullary hematopoiesis ^a
	Bone pain
	Thrombosis
Cytopenias	Fatigue
	Dyspnea
	Ischemia
	Infection
	Bleeding
Constitutional	Fatigue
	Night sweats
	Fever
	Weight loss

Table 1. Clinical features at presentation of myelofibrosis with myeloid metaplasia.

^a May occur in any location including lung, epidural space, pericardium, intraperitoneal cavity.

Polycythemia vers is characterized by an increased hematocrit in the peripheral blood (test tube on left); a hypercellular marrow with increased numbers of erythrold, megakaryocytic, and granulocytic precursor cells; and a variable increase in the number of reticulin fibers. Essential thrombocythemia is characterized by an increase in the number of platelets in the peripheral blood and an increased number of megakaryocytes in the marrow, which tend to cluster together and have hyperiobated nuclei, idio pathic myelofibrosis is characterized by the presence of immature red and white cells, a so-celled evicent/templation blood film) and "teardron" red cells, disordered cellular architecture.

Complications

- Survival varies according to specific clinical features, but shorter than PV or ET pts.
- Natural history:
 - Increasing marrow failure
 - Transfusion-dependent anemia
 - Increasing organomegaly
- Chronic phase \rightarrow accelerated phase
- Transformation into aggressive AML (10%)

WHO criteria for MF 2007

Major

- 1. **Megakaryocyte proliferation and atypia** accompatined by either reticulin or collagen **fibrosis**, or in the absence of reticulin fibrosis the megkaryocyte changes must be accompanied by **increased marrow cellularity**, granulocytic proliferation and often decreased erytropoiesis
- 2. Not meeting WHO criteria for PV, PMF, CML, MDS, or other myeloid neoplasm
- 3. Demonstration of *JAK2 V*617F or other clonal marker, or in the absence of a clonal marker, no evidence for reactive myelofibrosis

Minor

- 1. Leukoerythroblastosis
- 2. Increased LDH
- 3. Anemia
- 4. Palpable splenomegaly

Diagnosis requires the presence of all major criteria and 2 minor criteria

Prognostic factors

Feature	All MMM patients (Dupriez score) ⁷	Young MMM patients (Cervantes score) ⁴⁴	
Anemia (hemoglobin <10 g/dL)			
Leukocytes (<4 or > 30×10^{9} /L)			
Blood blasts $(>1\%)$			
Constitutional symptoms			
Low risk	0 Factors (median survival:	0–1 factor (median survival:	
	93 months)	176 months)	
Intermediate risk	I Factor (median survival:	,	
	26 months)		
High risk	2 factors (median survival:	2–3 factors (median survival	
U U	13 months)	33 months)	

• Allogenic BM transplantation - the only curative treatment, but very hard for pts.

Non-transplant therapy

• Experimental therapy

Transplant vs. Other treatments

Low risk (life-expectancy > 10 years) Observation

Intermediate risk (life-expectancy 5-10 years)

•Age < 50 years

Transplant is Reasonable

•Age > 50 years

Non-transplant\ Experimental drugs High risk (life-expectancy < 5 years)

•Age < 50 years

Transplant is preferred

•Age 50-60 years

Transplant is reasonable

•Age > 60 years

Non-transplant\ Experimental drugs

Tefferi and Deeg. Mayo Clin Proc, in press

Rx.

• Transplant option

- Myeloablative
- Reduced-intensity conditioning (RIC)

Non-transplant options

- Treatment for anemia
 - Erythropoietin
 - Corticosteroids
 - Androgen + Prednisone
 - Danasol
 - Thalidomide + Prednisone
 - Lenalidomide
- Treatment for splenomegaly
 - Hydroxyurea (HU)
 - splenectomy
- Treatment for extramedullary hematopoiesis
 - Low dose irradiation
- Supportive care

Experimental therapy

Table 3. Current therapeutic strategies undergoingevaluation for the treatment of primary myelofibrosis.

- Small-molecule inhibitors of JAK2V617F
- TGF- β inhibitors
- NFκB inhibitors
- Chromatin-modifying agents
- Protease inhibitors
- Bcl-xL inhibitors
- VEGF inhibitors

Future therapy for MPD

Therapeutic potential of JAK2 inhibitors

Srdan Verstovsek1

¹ The University of Texas M. D. Anderson Cancer Center, Houston, TX

Table 1. Preliminary clinical observations in selected JAK2 inhibitor trials.

Agent	Company	Target(s)	JAK IC ₅₀ (nM)	Current phase	Preliminary clinical observations in myelofibrosis studies
INCB018424	Incyte	JAK1, JAK2	JAK1 = 2.7* JAK2 = 4.5* JAK3 = 322*	Ш	Decreased spleen size irrespective of JAK2 mutational status; improved quality of life, weight and performance; decreased inflammatory cytokine levels. Myelosuppression.
TG101348	TargeGen	JAK2	JAK1 = 105 JAK2 = 3 JAK3 = 996	П	Decreased spleen size; decrease in WBC. Myelosuppression; gastrointestinal disturbance.
XL019	Exelixis	JAK2	JAK1 = 132 JAK2 = 2 JAK3 = 250	discontinued	Decreased spleen size only in patients with JAK2 V617F or MPL mutation; decreased pruritis and improved fatigue. Neurotoxicity.
CEP701 (lestaurtinib)	Cephalon	JAK2, FLT3	JAK2 = 1	1711	Decreased spleen size, improvement in blood cell count. Myelosuppression; gastrointestinal disturbance.

*Assays performed at 1 mM ATP concentration.

Thank You!!