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Pain _Analysis

While temperature, pulse, respirations, and blood
pressure are all objectively measure; pain is
inherently subjective.

» failure to properly assess pain is a common cause of
its poor control and lack of treatment in patients in
different settings

* It has been termed "the fifth vital sign" and is now
being evaluated and registered in the patients’ charts
during routine checkups.
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Medical Background

Studies on skin conductance and heart rate shoewd these
markers were found to be non specific to pain.

More sophisticated measurement like biomarkers for pain
intensity and EEG analysis have been tested but were found non
applicable.

To date, no clinically applicable tool has been developed to use
the HRV to assess pain levels accurately in patients.

Moreover, several studies, including those involving neonates,
have established that this system was unable to serve as a sole
objective pain assessment tool.



Aim
Our objective is to find
correlation between the ECG
and the Heart rate to pain

by novel analysis methods
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ECG and Pain???
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ECG Analysis
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ECG Analysis

* Forming the R-R wave
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Why bother? - HRV for Pain Analysis
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Fourier Transform

The Fourier transform (FT) is an operation that transforms one
complex-valued function of a real variable into another.

That of the new function is frequency, and so the Fourier
transform is often called the frequency domain representation
of the original function.

The Fourier transform decomposes a function of time (a signal)
into the frequencies that make it up



Fourier Transforms




The Wavelet Transform

A wavelet series is a representation of a square
integrable (real - or complex - valued) function by a
certain orthonomal series generated by a fixed and
known pattern known as a wavelet.

Unlike FT, the continuous wavelet transform
possesses the ability to construct a time-frequency
representation of a signal that offers very good time
and frequency localization.
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 Fourier Transforms -
signal Harmonics

- Wavelets -
time dependant acute change



Orthogonal Matching Pursuit

OMP is a greedy least-squares procedure that chooses the dictionary

vectors one at a time.

At each step (A=1) a single vector from the combined dictionary that
has the highest correlation with b is chosen by solving the following
problem:

min (mcin Ib—cv]| 2)

vis a vector of thematrix [A, | A,]Jandce R

61 be the resulting best approximation of b

e, = b — b1 be the error after the first step
In the A-th step the next vector is determined by solving
min(min lews — chz)

vis a vector of thematrix [A | A,Jandc e R



The Cold Pressor Experiment

15 healthy adult volunteers
participated in this experiment.

The subjects were sampled during
10 minutes of rest as baseline.
Then they dipped their dominant
hand into icy water to produce
acute pain and each subject kept
the hand till the point of maximal
pain and voluntarily took the hand
out.

Sampling ended when the subject
was relieved of any pain




Sparse representation of the EKG of

Using Over-complete dictionaries

Original RR Signal
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Sparse representation of the EKG of

Using Over-complete dictionaries
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Sparse representation of the EKG of

Using Over-complete dictionaries

Original RR Signal 13 Fourier coefficients
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Sparse representation of the EKG of

Using Over-complete dictionaries
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Results

Standard Wavelet Transform coefficients density

(coefficients per seconds)

OMP Wavelet coefficients density

(coefficients per seconds)

Subject Baseline |[Incline Stable Decline > CPT Baseline |Incline Stable Decline > CPT
10/398 11/91 2/31 10/159 23/281 1/398 5/91 5/159 10/281
1 (0.025) (0.12) (0.064) (0.0629)| (0.0818)( (0.0025) (0.055) (0.0314)| (0.0355)
12/414 5/105 1/100 13/335 19/540 1/414 3/105 3/335 6/540
2 (0.0289)| (0.0476) (0.01) (0.0388) (0.0351)| (0.0024) (0.028) (0.0089)| (0.0111)
12/60 22/108 22/108 2/260 16/108 16/108
3 (0.2) (0.203) (0.203)| (0.0077) (0.148) (0.148)
3/482 4/198 6/113 4/240 14/551 2/482 1/198 3/113 3/240 7/551
4 (0.0062) | (0.0202) (0.053) (0.0156)| (0.0254)| (0.0041) (0.005)  (0.0265) (0.0125)| (0.0127)
7/328 5/93 2/98 7/205 14/396 4/328 2/93 8/205 10/396
5 (0.0213)| (0.0537) (0.0204) (0.0341)| (0.0353) (0.0121)| (0.0215) (0.039)| (0.0252)
13/346 10/139 10/139 1/346 3/139 3/139
6 (0.0375) (0.072) (0.072)] (0.0029)| (0.0216) (0.0216)
4/397 3/98 23/287 26/385 2/397 1/98 6/287 7/385
7 (0.01) (0.03) (0.08) (0.0675) (0.005) (0.0102) (0.0209) (0.0182)
2/425 3/191 6/412 9/603 1/425 3/191 5/412 8/603
8 (0.0047) (0.015) (0.0145) (0.015)| (0.0024)| (0.0157) (0.0121) (0.0132)
12/258 6/142 4/135 11/308 21/585 1/258 3/142 1/135 2/308 6/585
9 (0.0465)| (0.0422) (0.0296) (0.035)| (0.0358)| (0.0039) (0.211)  (0.0074) (0.0065)| (0.0102)
17/328 4/115 9/360 10/120 23/783 4/328 4/360 6/120 10/783
10 (0.0518)| (0.0347) (0.025) (0.083)] (0.0293)| (0.0121) (0.011) (0.05)] (0.0128)
13/291 5/89 5/89 2/291 3/89 3/89
11 (0.0446)| (0.0561) (0.0561)| (0.0069)| (0.0337) (0.0337)




Results

Data from 11 subjects was analyzed.

Compared to baseline, The WT analysis showed a significant
coefficients density increase during the pain incline period (p<0.01) and
the entire CPT (p<0.01), with significantly higher coefficient amplitudes.

The OMP analysis showed a significant wavelet coefficients density
increase during pain incline and decline periods (p<0.01, p<0.05) and the
entire CPT (p<0.001), with suggestive higher amplitudes.

Comparison of both methods showed that during the baseline there was
a significant reduction of wavelet coefficient density using the OMP
algorithm (p<0.001).

Analysis by the two way ANOVA with repeated measures showed a
significant proportional increase of wavelet coefficients during the
incline period and the entire CPT using the OMP algorithm (p<0.01).



Experiment #2

- UCSD - VA

Anasthesia
department
- Pain research

» Controlled pain was
inflicted on 15
subjects by capsaicin
injection to the right
thigh during ECG
sampling, correlated
to blood cortisol and
substance P levels.
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Using Over-complete dictionaries
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Sparse representation of the EKG of

Using Over-complete dictionaries
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Sparse representation of the EKG of

Using Over-complete dictionaries
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Wavelet of R-R signal
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Wavelet of R-R signal
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Conclusions

* HRV - is personal dependant

* WT - Suggestive

* OMP - best representation

But.... Thisis not all.......



Arrhythmia Prediction

+ Initial assessment: RR intervals from patients who
experienced ventricular arrhythmias were made
public by Medtronic Inc. on the Web (the Physionet
database).

* Those patients’ data were analyzed using the Wavelet
transform and the OMP algorithm with an over-

complete Fourier/Wavelet dictionary



Combined baseline and pre-arrhythmia

Original RR Signal
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Wavelet of R-R signal
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Large Scale ECG Database.

Data of 30 ICD patients with ventricular tachyarrhythmia from the
HAWAT registry (Biotronik Ltd) was analyzed.

v{_\/\/\\;éI: assessment of HRV characteristics prior to the onset of
Most had ischemic HD, all had Biotronik ICDs with extended memory
function

Each pt had >1 baseline file and several pre-shock files.

The database included 36 baseline files and 83 pre-shock files, which
were grouped together regardless of the individual patient.

Each file was about 30 minutes long.

For each baseline file, three 10 minute long segments were extracted
For eacg pre-shock period only the 10 minute segment prior to shock
was used.

Using this model, 100 different baseline examples and 83 pre-
shock examples were utilized.




Analysis Method

The System used a large matrix using several mathematical transforms
combined to create the sparse representation of the tachogram:

The conventional Fourier transform

Short time Fourier analysis at different sliding scales

The Wavelet transform
Heart rate linear trends
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Signal processing

A discriminator was computed using ECG signal processing. An R-R signal was
extracted from each sampled segment.

For each sample the R-R signal was analyzed by using the OMP algorithm
with an over-complete Fourier, Wavelet and other dictionaries

Analysis included extraction of the energy and features of the calculated
coefficients (e.g. number of wavelet coefficients, linear trend properties etc),
and a classifier using logistic regression was used to discriminate between
baseline and pre-arrhythmia examples.

70 percent of the data was used for training the discriminator algorithm
and 30 percent was used for testing.

The process was repeated 3 times and an ROC curve based on the percentage
of recognition and the percentage of false positive recognition was built.
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Results

Correct
tachyarrhythmia  False positive
prediction

78% 27 7o
877 41%
90% 50%



Conclusions

An OMP-based discriminator achieved:

- successful detection of a majority of the imminent shock
periods

- with an inversely related false positive rate

- in a pooled, non-personalized data base with significant
interpersonal clinical variations.

We believe this initial analysis method for predictive
tachyarrhythmia modeling can

- be further improved to achieve clinically useful rates

- suggest interventions to reduce VT/VF episodes and ICD
shocks.

Patient-specific tests are being performed to evaluate the current
system.



The Aim of our study

We believe this initial analysis method for predictive
tachyarrhythmia modeling can be further studied in other
systems.

Our aim is to assess the pilots during the ROBD (reduced
oxygen breathing device) and evaluate the ability of this
system to predict physiological changes during hypoxia.



Questions ?
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