Pediatric Muscle Disorders: Approach and Diseases.

ד"ר שי מנשקו- היחידה לנוירולוגית ילדים

Objectives

- Overview
- Clinical Examples
- Diagnosis
- Management: role of the pediatrician

Myopathy Patients Present with Muscle Symptoms:

- Negative symptoms (commonly)
 - Weakness
 - Fatigue and exercise intolerance
- Positive symptoms (rarely)
 - Myalgia, contractures, muscle swelling, myoglobinuria (usually exercise-induced)
 - Myotonia

What Else Can Present as a Pure Motor Syndrome?

- Motor neuron disorders
 - Fasciculations, cramping, weakness of muscle groups that would be unusual for most or any myopathy
- Myoneural junction disorders
 - Ocular muscle involvement, striking fatiguability
 - Proximal weakness in LEMS and rare cases of limbgirdle MG
- Some neuropathies
 - Especially CIDP
 - Reflex loss, cramps, fasciculations, unusual patterns of weakness

Symptoms of Weakness

- Proximal lower extremities
 - Difficulty climbing stairs, using arms to pull self up using railings
 - Difficulty rising from toilet or chair, or getting out of a car
- Proximal upper extremities
 - Lifting or reaching for objects over head, combing hair
- Distal extremities (atypical for most myopathies, but can occur)
 - Foot drop, loss of grip strength, loss of fine hand movements

Fatigue

- Always present, but so non-specific as to be essentially useless in diagnosis
- Fatigable focal muscle weakness causing specific deficits is much more useful
 - Usually suggests myoneural junction disease
 - Much less often, a muscle disease
 - Periodic paralyses
 - Myotonic disorders
 - Bioenergetic defects

Myalgia

- Uncommon in most muscle diseases. Principle exception is dermatomyositis, where pain is common (due to muscle ischemia)
- Non-specific, particularly in cases where examination and investigations are normal (most patients with myalgias and no weakness do not have an identifiable myopathy)
- Episodic myalgia can be seen in metabolic myopathies

Myoglobinuria

- Due to rhabdomyolysis with release of myoglobin into blood
- Recurrent myoglobinuria suggests metabolic myopathies
- Renal failure can occur
- "Coke-coloured" urine
 - Patients routinely endorse this symptom, however, and it ends up being quite unhelpful to elicit this history in nearly all patients

Family history

- Detailed family tree to look for evidence of inherited disease and mode of inheritance
 - Use of canes or wheelchairs
 - Skeletal deformities
 - Other functional limitations

Precipitating Factors

- Illicit drug use
- Medications
- Exercise
- Fever, fasting
- Carbohydrate meal
- Cold exposure

Systemic Symptoms and Signs

- Systemic involvement is common in muscle disorders, much more so than in nerve or anterior horn cell disorders
- A brief list...not all-inclusive
- Cardiac (most important)
 - Myotonic dystrophy, Duchenne/Becker, Emery-Dreifuss
 - Amyloid myopathy
 - Desminopathies
 - Nemaline myopathy
 - Mitochondrial disease (e.g. Kearn-Sayre syndrome)
- Respiratory
 - Dermatomyositis, polymyositis (interstitial pneumonitis)
 - Myotonic dystrophy, Duchenne/Becker
 - Centronuclear myopathy, nemaline myopathy
 - Acid maltase deficiency

Systemic Symptoms and Signs

- Ophthalmologic (cataracts)
 - Myotonic dystrophy
- Endocrine
 - Myotonic dystrophy
 - Mitochondrial disease
- Renal
 - Amyloid
 - Any disorders causing myoglobinuria

- GI motility
 - Myotonic dystrophy
 - Mitochondrial disease
- Cognitive involvement
 - Myotonic dystrophy (severe cases)
 - Mitochondrial disease
 - FSHD (large deletions)

Muscular diseases

- Congenital muscular dystrophy
- Congenital myotonic dystrophy
- Infantil FSHD
- Congenital myopathies
- Metabolic myopathies
- Mitochondrial myopathies

INCIDENCE

Duchene Muscular Dystrophy
1/3300

■ Becker Muscular Dystrophy 1/18,000-1/31,000

■ Female dystrophinopathy carriers 40/100,000

Manifesting female dystrophinopathy carriers 1/100,000

■ Emery-Dreifuss Muscular Dystrophy 1/100,000

Myotonic Dystrophy 1/8000

Oculopharyngeal Muscular Dystrophy 1/200,000

■ Fascioscapulohumeral Muscular Dystrophy 1/20,000

Muscle-Eye-Brain Disease 1/50,000 Finland, isolated cases elsewhere

Fukuyama Congenital Muscular Dystrophy (Japan) 7-12/100,000

Patterns of Weakness in Muscular Dystrophies

- (a) Duchenne/Becker
- (b) Emery-Dreifuss
- (c) Limb-girdle
- (d) Facioscapulohumeral
- (e) Distal
- (f) Oculopharyngeal

X-LINKED DYSTROPHIES

Duchene dystrophy dystrophin Xp21.2

Becker dystrophy

Xp21.2 (dystrophin)

Emery-Dreifuss

Xq28 (emerin)

XMEA

Xq28

■ LAMP2

Xq24

AUTOSOMAL DOMINANT DYSTROPHIES

7.61666111					
Disease	Locus	Gene product			
LGMD 1A	5q22-q34	myotilin			
LGMD 1B	1q11-21	lamin A/C			
LGMD 1C	3p25	caveolin			
LGMD 1D	6q23				
LGMD 1E	7q				
FSH	4q35				
FSH type 2					
Myotonic dystrophy	19q13	myotonin protein kinase			
DM2	3q21	zinc finger 9			
OMD	14q11.2-q13	poly(A) binding protein 2			
Bethlem myop.	21q22.3	collagen type VI a1 or a2 subunit			
Bethlem myop.	2q37	collagen type VI a3 or a3 subunit			
EDMD-dominant	1q11-23	lamin A/C			
Myofibrillar myop.	11q22, 2q35	αB-crystallin desmin			
Tibial musc. dys.	2q	titin			
Distal myopathy	14				
Welander's dist. myop.					

6q23

FDC

Autosomal Recessive Dystrophies

	Disease	Locus	Gene Product
	LGMD 2A	15q15	calpain 3
	LGMD 2B	2p13	dysferlin
	LGMD 2C	13q12	gamma sarcoglycan
	LGMD 2D	17q12-21.3	alpha sarcoglycan
	LGMD 2E	4q12	beta sarcoglycan
	LGMD 2F	5q33-q34	delta sarcoglycan
	LGMD 2G	17q11-12	telethonin
	LGMD 2H	9q31-34.1	
	LGMD 2I	19q13.3	fukutin-related protein
	LGMD 2J	2q31	titan
٠	EBS-MD	8q24	plectin
	Distal Myop.	9p1-q1	
	Miyoshi	2q12-14	dysferlin
•	Dietal myon	9n1-a1	

CONGENITAL DYSTROPHIES

Disease	Locus	Gene Product		
CMD with merosin deficiency	6q2	laminin alpha 2 chain		
CMD without merosin deficiency				
Congenital musc. dys. 1C	19q1	fukutin-related protein		
CMD with integrin deficiency	12q13	integrin alpha 7		
CMD with rigid spine	1p35-36	selenoprotein N		
Fukuyama CMD	9q31-33	fukutin		
Muscle-Eye-Brain disease	1p32-p34	POMGnT1		
Walker Warburg				
Ullrich syndrome	21q2	collagen VI		

Dystrophinopathy

Dystrophin

Dystrophin

- 427 kDa protein
- Gene located on Xp21.2
- Predominantly expressed in skeletal and cardiac muscles (small amounts in brain also)
- Absent in DMD (frame-shift mutations) and reduced in BMD (in-frame mutations)
- Interacts with membrane proteins of the dystrophin-glycoprotein complex (DGC)
 - DGC stabilizes the sarcolemma and protects muscle fibres from contraction-induced damage and necrosis

DMD

- Duchenne muscular dystrophy
- Genotype: Dystrophin
- 96% with <u>frameshift</u> mutation
- 30% with new mutation
- 10% to 20% of new mutations are gonadal mosaic
- Onset 3 to 5 yrs

BMD

- Genotype: <u>Dystrophin mutations</u>
- 70% of patients: Usually <u>In-frame</u>
- 16% with <u>frameshift</u> mutation
- New mutations rare
- **■** Point mutations > 70 identified
- Mutations in CpG: All C to T; None G to A

ממצאים קליניים

צביעות לדיסטרופין

Western blot of dystrophin

- 1,2 BMD
- 3 NORMAL
- 4 DMD

Myotonia

- Impaired relaxation of muscle after forceful voluntary contraction, due to repetitive depolarization of muscle membrane
- Most commonly patients are symptomatic in hands, but also can affect tongue, eyelids, thighs (walking)
- Complaints of stiffness or tightness, difficulty releasing handshake, unscrewing bottle top, or opening eyes
- Classically improves with repeated exercise and made worse with cold exposure, but considerable variation among patients and disorders

Myotonic Dystrophy

- Myotonic muscular dystrophy is often known simply as myotonic dystrophy and is occasionally called Steinert's disease, after a doctor who originally described the disorder in 1909.
- It's also called dystrophia myotonica, a Latin name, and therefore often abbreviated "DM."

Myotonic Dystrophy

- Autosomal Dominant
 - due to expanded CTG repeat on chromosome 19
 - CTG expansion occurs in the 3' noncoding region of the myotonic dystrophy protein kinase (*DMPK*) gene
 - the number of repeats correlates positively with disease severity
- Anticipation occurs primarily via maternal transmission
- Pregnancy often associated with polyhydramnious, preterm labour, and breech presentation

Congenital Myotonic Dystrophy

CNS

- 70% of congenitally affected children suffer mildmoderate mental retardation
- Ventriculomegaly
- affected mothers often report poor school performance (even if never suspected of having MD)

A child born with congenital myotonic dystrophy is likely to have facial weakness and an upper lip that looks "tented." The eye muscles may also be affected.

Clinical Sings

A long, thin face with hollow temples, drooping eyelids and, in men, balding in the front.

Myotonic Dystrophy

Skeletal muscle:

- neonatal hypotonia, muscle weakness
- myopathic facies, often with non-fluctuating ptosis
- poor gag and swallow: at risk for aspiration
- delayed milestones
- myotonia elicitable by age 7-8 years
- scoliosis common

Cardiac:

- at risk for cardiac arrhythmias
- <u>sudden death well documented</u>
- may develop cardiomyopathy
 - needs yearly cardiology follow-up

Ocular

- at risk for cataracts, and retinal degeneration
- often myopic
 - need yearly ophthalmology examination

Smooth muscle

- at risk for small bowel dilatation (acute abdominal pain or distention must be evaluated for megacolon)
- increased risk of gallstones (due to delayed gallbladder emptying)
- often have patulous anus (may be mistaken for child abuse in older children)
- women often have uterine instability (miscarriages, preterm labour)

- Fatigue and Hypersomnia
 - very common, etiology unknown
 - some patients respond to Ritalin
- Endocrine
 - at risk for growth failure (abnormal growth hormone),
 hyperglycemia (rarely severe)
 - may have testicular atrophy, reduced fertility
 - early onset frontal balding

Anesthesia

- at risk for poor ventilatory recovery post-anesthetics
- may develop a malignant hyperthermia-like reaction
 - avoid general anesthesia whenever possible, monitor very closely
 - must wear a medic-alert bracelet

Percussion Myotonia

ביופסית שריר

שינויים לא ספציפיים, גרעינים מרכזיים

CTG repeats expansion

Normal

5 - 30 repeats

Altered

50 - 2000 repeats

DM1: Myotonin protein kinase (DMPK) protein

The expanded area of DNA is in a gene that carries instructions for a protein known as myotonin protein kinase.

The expanded DNA isn't in the "working" part of the gene -- the part that carries instructions telling cells to make myotonin protein kinase.

- Characterized by myotonia, muscular dystrophy, cataracts, hypogonadism, frontal balding, and ECG changes
- Dystrophia myotonica protein kinase gene (DMPK)
- Anticipation: Disease manifests earlier and more severely in subsequent generations

DM2

- In DM2 (type 2) patients, CCTG repeats in the first intron of the ZNF9 gene are found expanded.
- The clinical manifestations of DM1 and DM2 are very similar, although there are some differences.
- The signs and symptoms of type 2 myotonic dystrophy typically appear in adulthood.
- Congenital myotonic dystrophy has not been seen in families with type 2.

- The inherited mutation in the ZNF9 gene is an abnormally large segment made up of four repeated DNA bases (CCTG).
- This sequence is copied from 75 to more than 11,000 times in people who have the disease, with an average of about 5,000 repeats.
- messenger RNA from the altered ZNF9 gene can interact with certain proteins to form clumps in the cell nucleus.
- These abnormal clumps prevent cells in muscles and other tissues from functioning normally, leading to the signs and symptoms of type 2 myotonic dystrophy.

Facioscapulohumeral Dystrophy (FSHD)

- Third most common familial myopathy (after dystrophinopathies and myotonic dystrophy)
 - Prevalence: 1 in 20,000
- Age of onset can be from the 1st to 6th decade
 - Mean: male 16 years, female 20 years
 - Penetrance is 95% by age 20
- M:F ratio equal in symptomatic patients, but a larger percentage of females tends to be asymptomatic and remains so beyond age 30

Clinical Features of FSHD

- Typical phenotype
 - Early involvement of facial and shoulder girdle muscles with scapular winging, progressing to dorsiflexor and pelvic girdle weakness
 - Weakness often asymmetrical
 - Relative sparing of deltoids is common
- Extramuscular involvement in FSHD
 - Usually subclinical
 - Sensorineural hearing loss (64%)
 - Retinal vasculopathy (49-75%)
 - Pectus excavatum (5%)
 - Mild cardiac conduction defects

Clinical Features of FSHD

Phenotypic Heterogeneity in FSHD

- Large number of atypical presentations
 - Facial-sparing scapulohumeral dystrophy
 - Limb-girdle muscular dystrophy
 - Distal myopathy
 - Asymmetric brachial weakness
 - Typical FSHD with CPEO

Genetics of FSHD

- Autosomal dominant inheritance in most cases
 - 10% of cases represent new mutations
- Deletion of 3.3 kb D4Z4 repeat units in the subtelomeric (non-coding) region of 4q35
 - Normal individuals: 12-100 copies of D4Z4
 - FSHD: less than 12 copies
 - Deletion alters expression of a more proximally located gene (position-effect variegation)?
- Association with the 4qA allele (distal to the D4Z4 repeat array)
- FSHD gene has not been located yet

Genetics of FSHD

- Clinical severity ranges from asymptomatic carriers to severely affected cases
- Significant interfamilial and intrafamilial variability in age of onset and disease severity (in individuals with the same number of repeats)

Treatment of FSHD

- Supportive
- No effective treatment
 - Negative open-label trial of prednisone
 - Negative randomized-controlled trial of albuterol
- Surgery for ankle contractures, scoliosis, pectus excavatum
- 20% of patients become wheelchair dependent

Congenital Myopathies

- Congenital disorders defined by structural aberration in muscle fiber architecture
- Present with neonatal hypotonia and delayed motor milestones
- EMG normal or shows a mild myopathy
- CK often normal or even low
- Children often improve as muscle bulk increases
- At risk for pulmonary infections, scoliosis, and cardiomyopathy (some forms only)

Congenital Myopathies

- Nemaline Myopathy
- Central Core Myopathy
- Central Nuclear (myotubular) Myopathy
- Congenital Fiber Type Disproportion
- Other

Myotubular (Centronuclear) Myopathy

Central Core Myopathy

CFTD

Thank you

